S M Masrur Ahmed


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MoMentS: A Comprehensive Multimodal Benchmark for Theory of Mind
Emilio Villa-Cueva | S M Masrur Ahmed | Rendi Chevi | Jan Christian Blaise Cruz | Kareem Elzeky | Fermin Cristobal | Alham Fikri Aji | Skyler Wang | Rada Mihalcea | Thamar Solorio
Findings of the Association for Computational Linguistics: EMNLP 2025

Understanding Theory of Mind is essential for building socially intelligent multimodal agents capable of perceiving and interpreting human behavior. We introduce MoMentS (Multimodal Mental States), a comprehensive benchmark designed to assess the ToM capabilities of multimodal large language models (LLMs) through realistic, narrative-rich scenarios presented in short films. MoMentS includes over 2,300 multiple-choice questions spanning seven distinct ToM categories. The benchmark features long video context windows and realistic social interactions that provide deeper insight into characters’ mental states. We evaluate several MLLMs and find that although vision generally improves performance, models still struggle to integrate it effectively. For audio, models that process dialogues as audio do not consistently outperform transcript-based inputs. Our findings highlight the need to improve multimodal integration and point to open challenges that must be addressed to advance AI’s social understanding.