Rylan Conway


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Time Masking: Leveraging Temporal Information in Spoken Dialogue Systems
Rylan Conway | Mathias Lambert
Proceedings of the 20th Annual SIGdial Meeting on Discourse and Dialogue

In a spoken dialogue system, dialogue state tracker (DST) components track the state of the conversation by updating a distribution of values associated with each of the slots being tracked for the current user turn, using the interactions until then. Much of the previous work has relied on modeling the natural order of the conversation, using distance based offsets as an approximation of time. In this work, we hypothesize that leveraging the wall-clock temporal difference between turns is crucial for finer-grained control of dialogue scenarios. We develop a novel approach that applies a time mask, based on the wall-clock time difference, to the associated slot embeddings and empirically demonstrate that our proposed approach outperforms existing approaches that leverage distance offsets, on both an internal benchmark dataset as well as DSTC2.