Ryan Sandell


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
HoLM: Analyzing the Linguistic Unexpectedness in Homeric Poetry
John Pavlopoulos | Ryan Sandell | Maria Konstantinidou | Chiara Bozzone
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

The authorship of the Homeric poems has been a matter of debate for centuries. Computational approaches such as language modeling exist that can aid experts in making crucial headway. We observe, however, that such work has, thus far, only been carried out at the level of lengthier excerpts, but not individual verses, the level at which most suspected interpolations occur. We address this weakness by presenting a corpus of Homeric verses, each complemented with a score quantifying linguistic unexpectedness based on Perplexity. We assess the nature of these scores by exploring their correlation with named entities, the frequency of character n-grams, and (inverse) word frequency, revealing robust correlations with the latter two. This apparent bias can be partly overcome by simply dividing scores for unexpectedness by the maximum term frequency per verse.