Ruoyu Wang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Mitigating Visual Knowledge Forgetting in MLLM Instruction-tuning via Modality-decoupled Gradient Descent
Junda Wu | Yuxin Xiong | Xintong Li | Yu Xia | Ruoyu Wang | Yu Wang | Tong Yu | Sungchul Kim | Ryan A. Rossi | Lina Yao | Jingbo Shang | Julian McAuley
Findings of the Association for Computational Linguistics: EMNLP 2025

Recent MLLMs have demonstrated strong visual understanding and reasoning after large-scale multimodal pre-training. However, instruction-tuning is typically text-driven with limited visual supervision, leading to significant visual forgetting and degradation of pre-trained visual knowledge. Existing fine-tuning and continual learning methods compress visual representations and emphasize task alignment over visual retention, failing to address this challenge. We present a novel perspective using effective rank to quantify the loss of visual representation richness, framing visual forgetting as excessive compression under the information bottleneck principle. To address this, we propose modality-decoupled gradient descent (MDGD), which regulates gradient updates to preserve the effective rank of visual features and explicitly disentangles visual learning from task-specific alignment. We further introduce a memory-efficient fine-tuning variant using gradient masking for parameter-efficient adaptation. Extensive experiments show that MDGD effectively mitigates visual forgetting across downstream tasks and models, maintaining pre-trained visual knowledge while supporting strong task adaptation.

2021

pdf bib
Constructing Flow Graphs from Procedural Cybersecurity Texts
Kuntal Kumar Pal | Kazuaki Kashihara | Pratyay Banerjee | Swaroop Mishra | Ruoyu Wang | Chitta Baral
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021