Runqiang Zang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Towards Multi-System Log Anomaly Detection
Boyang Wang | Runqiang Zang | Hongcheng Guo | Shun Zhang | Shaosheng Cao | Donglin Di | Zhoujun Li
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 6: Industry Track)

Despite advances in unsupervised log anomaly detection, current models require dataset-specific training, causing costly procedures, limited scalability, and performance bottlenecks. Furthermore, numerous models lack cognitive reasoning abilities, limiting their transferability to similar systems. Additionally, these models often encounter the **“identical shortcut”** predicament, erroneously predicting normal classes when confronted with rare anomaly logs due to reconstruction errors. To address these issues, we propose **MLAD**, a novel **M**ulti-system **L**og **A**nomaly **D**etection model incorporating semantic relational reasoning. Specifically, we extract cross-system semantic patterns and encode them as high-dimensional learnable vectors. Subsequently, we revamp attention formulas to discern keyword significance and model the overall distribution through vector space diffusion. Lastly, we employ a Gaussian mixture model to highlight rare word uncertainty, optimizing the vector space with maximum expectation. Experiments on real-world datasets demonstrate the superiority of MLAD.