Ruiping Li


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
DIVINE: A Generative Adversarial Imitation Learning Framework for Knowledge Graph Reasoning
Ruiping Li | Xiang Cheng
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Knowledge graphs (KGs) often suffer from sparseness and incompleteness. Knowledge graph reasoning provides a feasible way to address such problems. Recent studies on knowledge graph reasoning have shown that reinforcement learning (RL) based methods can provide state-of-the-art performance. However, existing RL-based methods require numerous trials for path-finding and rely heavily on meticulous reward engineering to fit specific dataset, which is inefficient and laborious to apply to fast-evolving KGs. To this end, in this paper, we present DIVINE, a novel plug-and-play framework based on generative adversarial imitation learning for enhancing existing RL-based methods. DIVINE guides the path-finding process, and learns reasoning policies and reward functions self-adaptively through imitating the demonstrations automatically sampled from KGs. Experimental results on two benchmark datasets show that our framework improves the performance of existing RL-based methods while eliminating extra reward engineering.