Ruihong Zeng


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
MGM: Global Understanding of Audience Overlap Graphs for Predicting the Factuality and the Bias of News Media
Muhammad Arslan Manzoor | Ruihong Zeng | Dilshod Azizov | Preslav Nakov | Shangsong Liang
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

In the current era of rapidly growing digital data, evaluating the political bias and factuality of news outlets has become more important for seeking reliable information online. In this work, we study the classification problem of profiling news media from the lens of political bias and factuality. Traditional profiling methods, such as Pre-trained Language Models (PLMs) and Graph Neural Networks (GNNs) have shown promising results, but they face notable challenges. PLMs focus solely on textual features, causing them to overlook the complex relationships between entities, while GNNs often struggle with media graphs containing disconnected components and insufficient labels. To address these limitations, we propose MediaGraphMind (MGM), an effective solution within a variational Expectation-Maximization (EM) framework. Instead of relying on limited neighboring nodes, MGM leverages features, structural patterns, and label information from globally similar nodes. Such a framework not only enables GNNs to capture long-range dependencies for learning expressive node representations but also enhances PLMs by integrating structural information and therefore improving the performance of both models. The extensive experiments demonstrate the effectiveness of the proposed framework and achieve new state-of-the-art results. Further, we share our repository which contains the dataset, code, and documentation.