Rui Mata


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A rebuttal of two common deflationary stances against LLM cognition
Zak Hussain | Rui Mata | Dirk U. Wulff
Findings of the Association for Computational Linguistics: ACL 2025

Large language models (LLMs) are arguably the most predictive models of human cognition available. Despite their impressive human-alignment, LLMs are often labeled as "*just* next-token predictors” that purportedly fall short of genuine cognition. We argue that these deflationary claims need further justification. Drawing on prominent cognitive and artificial intelligence research, we critically evaluate two forms of “Justaism” that dismiss LLM cognition by labeling LLMs as “just” simplistic entities without specifying or substantiating the critical capacities these models supposedly lack. Our analysis highlights the need for a more measured discussion of LLM cognition, to better inform future research and the development of artificial intelligence.