Rui He


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
One-Dimensional Object Detection for Streaming Text Segmentation of Meeting Dialogue
Rui He | Zhongqing Wang | Minjie Qiang | Hongling Wang | Yifan.zhang Yifan.zhang | Hua Xu | Shuai Fan | Guodong Zhou
Findings of the Association for Computational Linguistics: ACL 2025

Dialogue text segmentation aims to partition dialogue content into consecutive paragraphs based on themes or logic, enhancing its comprehensibility and manageability. Current text segmentation models, when applied directly to STS (Streaming Text Segmentation), exhibit numerous limitations, such as imbalances in labels that affect the stability of model training, and discrepancies between the model’s training tasks (sentence classification) and the actual text segmentation that limit the model’s segmentation capabilities.To address these challenges, we first implement STS for the first time using a sliding window-based segmentation method. Secondly, we employ two different levels of sliding window-based balanced label strategies to stabilize the training process of the streaming segmentation model and enhance training convergence speed. Finally, by adding a one-dimensional bounding-box regression task for text sequences within the window, we restructure the training approach of STS tasks, shifting from sentence classification to sequence segmentation, thereby aligning the training objectives with the task objectives, which further enhanced the model’s performance. Extensive experimental results demonstrate that our method is robust, controllable, and achieves state-of-the-art performance.