This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RuiFang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Event detection has been suffering from constantly emerging event types with lack of sufficient data. Existing works formulate the new problem as few-shot event detection (FSED), and employ two-stage or unified models based on meta-learning to address the problem. However, these methods fall far short of expectations due to: (i) insufficient learning of discriminative representations in low-resource scenarios, and (ii) representation overlap between triggers and non-triggers. To resolve the above issues, in this paper, we propose a novel Hybrid Contrastive Learning method with a Task-Adaptive Threshold (abbreviated as HCL-TAT), which enables discriminative representation learning with a two-view contrastive loss (support-support and prototype-query), and devises an easily-adapted threshold to alleviate misidentification of triggers. Extensive experiments on the benchmark dataset FewEvent demonstrate the superiority of our method to achieve better results compared to the state-of-the-arts. All the data and codes will be available to facilitate future research.
This paper describes the approach we used for SemEval-2017 Task 4: Sentiment Analysis in Twitter. Topic-based (target-dependent) sentiment analysis has become attractive and been used in some applications recently, but it is still a challenging research task. In our approach, we take the left and right context of a target into consideration when generating polarity classification features. We use two types of word embeddings in our classifiers: the general word embeddings learned from 200 million tweets, and sentiment-specific word embeddings learned from 10 million tweets using distance supervision. We also incorporate a text feature model in our algorithm. This model produces features based on text negation, tf.idf weighting scheme, and a Rocchio text classification method. We participated in four subtasks (B, C, D & E for English), all of which are about topic-based message polarity classification. Our team is ranked #6 in subtask B, #3 by MAEu and #9 by MAEm in subtask C, #3 using RAE and #6 using KLD in subtask D, and #3 in subtask E.
This paper describes the approach we used for SemEval-2017 Task 5: Fine-Grained Sentiment Analysis on Financial Microblogs. We use three types of word embeddings in our algorithm: word embeddings learned from 200 million tweets, sentiment-specific word embeddings learned from 10 million tweets using distance supervision, and word embeddings learned from 20 million StockTwits messages. In our approach, we also take the left and right context of the target company into consideration when generating polarity prediction features. All the features generated from different word embeddings and contexts are integrated together to train our algorithm