Ruba Jaikat


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

bib
A Data-Centric Approach to Real-World Custom NMT for Arabic
Rebecca Jonsson | Ruba Jaikat | Abdallah Nasir | Nour Al-Khdour | Sara Alisis
Proceedings of Machine Translation Summit XVIII: Users and Providers Track

In this presentation, we will present our approach to taking Custom NMT to the next level by building tailor-made NMT to fit the needs of businesses seeking to scale in the Arabic-speaking world. In close collaboration with customers in the MENA region and with a deep understanding of their data, we work on building a variety of NMT models that accommodate to the unique challenges of the Arabic language. This session will provide insights into the challenges of acquiring, analyzing, and processing customer data in various sectors, as well as insights into how to best make use of this data to build high-quality Custom NMT models in English-Arabic. Feedback from usage of these models in production will be provided. Furthermore, we will show how to use our translation management system to make the most of the custom NMT, by leveraging the models, fine-tuning and continuing to improve them over time.