Rowshon Akter


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Punny_Punctuators@DravidianLangTech-EACL2024: Transformer-based Approach for Detection and Classification of Fake News in Malayalam Social Media Text
Nafisa Tabassum | Sumaiya Aodhora | Rowshon Akter | Jawad Hossain | Shawly Ahsan | Mohammed Moshiul Hoque
Proceedings of the Fourth Workshop on Speech, Vision, and Language Technologies for Dravidian Languages

The alarming rise of fake news on social media poses a significant threat to public discourse and decision-making. While automatic detection of fake news offers a promising solution, research in low-resource languages like Malayalam often falls behind due to limited data and tools. This paper presents the participation of team Punny_Punctuators in the Fake News Detection in Dravidian Languages shared task at DravidianLangTech@EACL 2024, addressing this gap. The shared task focuses on two sub-tasks: 1. classifying social media texts as original or fake, and 2. categorizing fake news into 5 categories. We experimented with various machine learning (ML), deep learning (DL) and transformer-based models as well as processing techniques such as transliteration. Malayalam-BERT achieved the best performance on both sub-tasks, which obtained us 2nd place with a macro f1-score of 0.87 for the subtask-1 and 11th place with a macro f1-score of 0.17 for the subtask-2. Our results highlight the potential of transformer models for low-resource languages in fake news detection and pave the way for further research in this crucial area.