Roshni Chakraborty


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Political Stance Detection in Estonian News Media
Lauri Lüüsi | Uku Kangur | Roshni Chakraborty | Rajesh Sharma
Proceedings of the 9th International Workshop on Computational Linguistics for Uralic Languages

Newspapers have always remained an important medium for disseminating information to the masses. With continuous access and availability of news, there is a severe competition among news media agencies to attract user attention. Therefore, ensuring fairness in news reporting, such as, politically stance neutral reporting has become more crucial than before. Although several research studies have explored and detected political stance in English news articles, there is a lack of research focusing on low-resource languages like Estonian. To address this gap, this paper examines the effectiveness of established stance-detection features that have been successful for English news media, while also proposing novel features tailored specifically for Estonian. Our study consists of 32 different features comprising of lexical, Estonian-specific, framing and sentiment-related features out of which we identify 15 features as useful for stance detection.