Rose Yu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
MORL-Prompt: An Empirical Analysis of Multi-Objective Reinforcement Learning for Discrete Prompt Optimization
Yasaman Jafari | Dheeraj Mekala | Rose Yu | Taylor Berg-Kirkpatrick
Findings of the Association for Computational Linguistics: EMNLP 2024

RL-based techniques can be employed to search for prompts that, when fed into a target language model, maximize a set of user-specified reward functions. However, in many target applications, the natural reward functions are in tension with one another – for example, content preservation vs. style matching in style transfer tasks. Current techniques focus on maximizing the average of reward functions, which does not necessarily lead to prompts that achieve balance across rewards – an issue that has been well-studied in the multi-objective and robust optimization literature. In this paper, we conduct an empirical comparison of several existing multi-objective optimization techniques adapted to this new setting: RL-based discrete prompt optimization. We compare two methods optimizing the volume of the Pareto reward surface and one method that chooses an update direction that benefits all rewards simultaneously. We evaluate performance on two NLP tasks: style transfer and machine translation, each using three competing reward functions. Our experiments demonstrate that multi-objective methods that directly optimize the volume of the Pareto reward surface perform better and achieve a better balance of all rewards than those that attempt to find monotonic update directions.