Rongzhi Zhu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Mitigating Lost-in-Retrieval Problems in Retrieval Augmented Multi-Hop Question Answering
Rongzhi Zhu | Xiangyu Liu | Zequn Sun | Yiwei Wang | Wei Hu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we identify a critical problem, “lost-in-retrieval”, in retrieval-augmented multi-hop question answering (QA): the key entities are missed in LLMs’ sub-question decomposition. “Lost-in-retrieval” significantly degrades the retrieval performance, which disrupts the reasoning chain and leads to the incorrect answers. To resolve this problem, we propose a progressive retrieval and rewriting method, namely ChainRAG, which sequentially handles each sub-question by completing missing key entities and retrieving relevant sentences from a sentence graph for answer generation. Each step in our retrieval and rewriting process builds upon the previous one, creating a seamless chain that leads to accurate retrieval and answers. Finally, all retrieved sentences and sub-question answers are integrated to generate a comprehensive answer to the original question. We evaluate ChainRAG on three multi-hop QA datasets—MuSiQue, 2Wiki, and HotpotQA—using three large language models: GPT4o-mini, Qwen2.5-72B, and GLM-4-Plus. Empirical results demonstrate that ChainRAG consistently outperforms baselines in both effectiveness and efficiency.