This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RonanJohnson
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Facial movements and expressions are critical features of signed languages, yet are some of the most challenging to reproduce on signing avatars. Due to the relative lack of research efforts in this area, the facial capabilities of such avatars have yet to receive the approval of those in the Deaf community. This paper revisits the representations of the human face in signed avatars, specifically those based on parameterized muscle simulation such as FACS and the MPEG-4 file definition. An improved framework based on rotational pivots and pre-defined movements is capable of reproducing realistic, natural gestures and mouthings on sign language avatars. The new approach is more harmonious with the underlying construction of signed avatars, generates improved results, and allows for a more intuitive workflow for the artists and animators who interact with the system.
An avatar that produces legible, easy-to-understand signing is one of the essential components to an effective automatic signed/spoken translation system. Facial nonmanual signals are essential to natural signing, but unfortunately signing avatars still do not produce acceptable facial expressions, particularly on the lower face. This paper reports on an innovative method to create more realistic lip postures. The approach manages the complexity of creating lip postures, thus making fewer demands on the artists making them. The method will be integral to our efforts to develop libraries containing lip postures to support the generation of facial expressions for several sign languages.
A recurring concern, oft repeated, regarding the quality of signing avatars is the lack of proper facial movements, particularly in actions that involve mouthing. An analysis uncovered three challenges contributing to the problem. The first is a difficulty in devising an algorithmic strategy for generating mouthing due to the rich variety of mouthings in sign language. For example, part or all of a spoken word may be mouthed depending on the sign language, the syllabic structure of the mouthed word, as well as the register of address and discourse setting. The second challenge was technological. Previous efforts to create avatar mouthing have failed to model the timing present in mouthing or have failed to properly model the mouth’s appearance. The third challenge is one of usability. Previous editing systems, when they existed, were time-consuming to use. This paper describes efforts to improve avatar mouthing by addressing these challenges, resulting in a new approach for mouthing animation. The paper concludes by proposing an experiment in corpus building using the new approach.
Of the five phonemic parameters in sign language (handshape, location, palm orientation, movement and nonmanual expressions), the one that still poses the most challenges for effective avatar display is nonmanual signals. Facial nonmanual signals carry a rich combination of linguistic and pragmatic information, but current techniques have yet to portray these in a satisfactory manner. Due to the complexity of facial movements, additional considerations must be taken into account for rendering in real time. Of particular interest is the shading areas of facial deformations to improve legibility. In contrast to more physically-based, compute-intensive techniques that more closely mimic nature, we propose using a simple, classic, Phong illumination model with a dynamically modified layered texture. To localize and control the desired shading, we utilize an opacity channel within the texture. The new approach, when applied to our avatar “Paula”, results in much quicker render times than more sophisticated, computationally intensive techniques.