Ron Keinan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Text Mining at SemEval-2024 Task 1: Evaluating Semantic Textual Relatedness in Low-resource Languages using Various Embedding Methods and Machine Learning Regression Models
Ron Keinan
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

In this paper, I describe my submission to the SemEval-2024 contest. I tackled subtask 1 - “Semantic Textual Relatedness for African and Asian Languages”. To find the semantic relatedness of sentence pairs, I tackled this task by creating models for nine different languages. I then vectorized the text data using a variety of embedding techniques including doc2vec, tf-idf, Sentence-Transformers, Bert, Roberta, and more, and used 11 traditional machine learning techniques of the regression type for analysis and evaluation.

2023

pdf bib
JCT at SemEval-2023 Tasks 12 A and 12B: Sentiment Analysis for Tweets Written in Low-resource African Languages using Various Machine Learning and Deep Learning Methods, Resampling, and HyperParameter Tuning
Ron Keinan | Yaakov Hacohen-Kerner
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

In this paper, we describe our submissions to the SemEval-2023 contest. We tackled subtask 12 - “AfriSenti-SemEval: Sentiment Analysis for Low-resource African Languages using Twitter Dataset”. We developed different models for 12 African languages and a 13th model for a multilingual dataset built from these 12 languages. We applied a wide variety of word and char n-grams based on their tf-idf values, 4 classical machine learning methods, 2 deep learning methods, and 3 oversampling methods. We used 12 sentiment lexicons and applied extensive hyperparameter tuning.