Rohan Sethi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Loyola at ArchEHR-QA 2025: Exploring Unsupervised Attribution of Generated Text: Attention and Clustering-Based Methods
Rohan Sethi | Timothy A. Miller | Majid Afshar | Dmitriy Dligach
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

The increasing volume of patient messages via electronic health record (EHR) portals has contributed significantly to clinician workload. Automating responses to these messages can help alleviate this burden, but it is essential to ensure that the generated responses are grounded in accurate clinical evidence. As part of the ArchEHR-QA 2025 BioNLP ACL shared task, we explore unsupervised methods for generating patient question responses that are both contextually accurate and evidence-backed. We investigate three novel approaches: zero-shot prompting, clustering-based evidence selection, and attention-based evidence attribution, along with a hybrid model that combines clustering and attention. Our methods do not require model fine-tuning and leverage the inherent structure of the input data to identify the most relevant supporting evidence from clinical notes. Our best-performing approach, which integrates clustering and attention, demonstrates a substantial improvement in factuality over baseline zero-shot methods, highlighting the potential of unsupervised strategies for enhancing the clinical utility of large language models in EHR contexts.