This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RobinChan
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
What can large language models learn? By definition, language models (LM) are distributionsover strings. Therefore, an intuitive way of addressing the above question is to formalize it as a matter of learnability of classes of distributions over strings. While prior work in this direction focused on assessing the theoretical limits, in contrast, we seek to understand the empirical learnability. Unlike prior empirical work, we evaluate neural LMs on their home turf—learning probabilistic languages—rather than as classifiers of formal languages. In particular, we investigate the learnability of regular LMs (RLMs) by RNN and Transformer LMs. We empirically test the learnability of RLMs as a function of various complexity parameters of the RLM and the hidden state size of the neural LM. We find that the RLM rank, which corresponds to the size of linear space spanned by the logits of its conditional distributions, and the expected length of sampled strings are strong and significant predictors of learnability for both RNNs and Transformers. Several other predictors also reach significance, but with differing patterns between RNNs and Transformers.
Language models (LMs) are currently at the forefront of NLP research due to their remarkable versatility across diverse tasks. However, a large gap exists between their observed capabilities and the explanations proposed by established formal machinery. To motivate a better theoretical characterization of LMs’ abilities and limitations, this tutorial aims to provide a comprehensive introduction to a specific framework for formal analysis of modern LMs using tools from formal language theory (FLT). We present how tools from FLT can be useful in understanding the inner workings and predicting the capabilities of modern neural LM architectures. We cover recent results using FLT to make precise and practically relevant statements about LMs based on recurrent neural networks and transformers by relating them to formal devices such as finite-state automata, Turing machines, and analog circuits. Altogether, the results covered in this tutorial allow us to make precise statements and explanations about the observed as well as predicted behaviors of LMs, as well as provide theoretically motivated suggestions on the aspects of the architectures that could be improved.
API integration is crucial for enterprise systems, as it enables seamless interaction between applications within workflows. However, the diversity and complexity of the API landscape present significant challenges in combining API calls based on user intent.Existing methods rely on named entity recognition (NER) and knowledge graphs, but struggle to generate more complex control flow structures, such as conditionals and loops.We propose a novel framework that leverages the success of large language models (LLMs) in code generation to integrate APIs based on natural language input. Our approach involves fine-tuning an LLM using automatically generated API flows derived from OpenAPI specifications.We further evaluate the effectiveness of enforcing the syntax and schema adherence through constrained decoding.To enable systematic comparison, we introduce targeted test suites to assess the generalization capabilities of these approaches and their ability to retain structured knowledge.Our findings show that LLMs fine-tuned on OpenAPI specifications can (a) learn structural API constraints implicitly during training, and (b) achieve significant improvements in both in-distribution and out-of-distribution performance over NER and retrieval-augmented generation (RAG)-based approaches.
Recent work by Hewitt et al. (2020) provides an interpretation of the empirical success of recurrent neural networks (RNNs) as language models (LMs). It shows that RNNs can efficiently represent bounded hierarchical structures that are prevalent in human language.This suggests that RNNs’ success might be linked to their ability to model hierarchy. However, a closer inspection of hewitt-etal-2020-rnns construction shows that it is not inherently limited to hierarchical structures. This poses a natural question: What other classes of LMs RNNs can efficiently represent? To this end, we generalize Hewitt et al.’s (2020) construction and show that RNNs can efficiently represent a larger class of LMs than previously claimed—specifically, those that can be represented by a pushdown automaton with a bounded stack and a specific stack update function. Altogether, the efficiency of representing this diverse class of LMs with RNN LMs suggests novel interpretations of their inductive bias.
We present a human-in-the-loop dashboard tailored to diagnosing potential spurious features that NLI models rely on for predictions. The dashboard enables users to generate diverse and challenging examples by drawing inspiration from GPT-3 suggestions. Additionally, users can receive feedback from a trained NLI model on how challenging the newly created example is and make refinements based on the feedback. Through our investigation, we discover several categories of spurious correlations that impact the reasoning of NLI models, which we group into three categories: Semantic Relevance, Logical Fallacies, and Bias. Based on our findings, we identify and describe various research opportunities, including diversifying training data and assessing NLI models’ robustness by creating adversarial test suites.