Riya Sawhney


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Iterative Repair with Weak Verifiers for Few-shot Transfer in KBQA with Unanswerability
Riya Sawhney | Samrat Yadav | Indrajit Bhattacharya | Mausam
Findings of the Association for Computational Linguistics: ACL 2025

Real-world applications of KBQA require models to detect different types of unanswerable questions with a limited volume of in-domain labeled training data. We propose the novel task of few-shot transfer for KBQA with unanswerable questions. The state-of-the-art KBQA few-shot transfer model (FuSIC-KBQA) uses an iterative repair strategy that assumes that all questions are answerable. As a remedy, we present FUn-FuSIC – a novel solution for our task that extends FuSIC-KBQA with Feedback for Unanswerability (FUn), which is an iterative repair strategy for answerable as well as unanswerable questions. FUn uses feedback from a suite of strong and weak verifiers, and an adaptation of self-consistency for unanswerability for assessing answerability of questions. Our experiments show that FUn-FuSIC significantly outperforms suitable adaptations of multiple LLM-based and supervised SoTA models on our task, while establishing a new SoTA performance for answerable few-shot transfer as well. We have made datasets and other resources publicly available at https://github.com/dair-iitd/funfusic/.

2024

pdf bib
Few-shot Transfer Learning for Knowledge Base Question Answering: Fusing Supervised Models with In-Context Learning
Mayur Patidar | Riya Sawhney | Avinash Singh | Biswajit Chatterjee | Mausam . | Indrajit Bhattacharya
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Existing Knowledge Base Question Answering (KBQA) architectures are hungry for annotated data, which make them costly and time-consuming to deploy. We introduce the problem of few-shot transfer learning for KBQA, where the target domain offers only a few labeled examples, but a large labeled training dataset is available in a source domain. We propose a novel KBQA architecture called FuSIC-KBQA that performs KB-retrieval using multiple source-trained retrievers, re-ranks using an LLM and uses this as input for LLM few-shot in-context learning to generate logical forms, which are further refined using execution-guided feedback. Experiments over four source-target KBQA pairs of varying complexity show that FuSIC-KBQA significantly outperforms adaptations of SoTA KBQA models for this setting. Additional experiments in the in-domain setting show that FuSIC-KBQA also outperforms SoTA KBQA models when training data is limited.