Rithwik Kerur


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Are LLMs Truly Graph-Savvy? A Comprehensive Evaluation of Graph Generation
Ege Demirci | Rithwik Kerur | Ambuj Singh
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

While large language models (LLMs) have demonstrated impressive capabilities across diverse tasks, their ability to generate valid graph structures remains underexplored. We evaluate fifteen state-of-the-art LLMs on five specialized graph generation tasks spanning delivery networks, social networks, quantum circuits, gene-disease networks, and transportation systems. We also test the LLMs using 3 different prompt types: direct, iterative feedback, and program-augmented. Models supported with explicit reasoning modules (o3-mini-high, o1, Claude 3.7 Sonnet, DeepSeek-R1) solve more than twice as many tasks as their general-purpose peers, independent of parameter count. Error forensics reveals two recurring failure modes: smaller parameter size Llama models often violate basic structural constraints, whereas Claude models respect topology but mismanage higher-order logical rules. Allowing models to refine their answers iteratively yields uneven gains, underscoring fundamental differences in error-correction capacity. This work demonstrates that graph competence stems from specialized training methodologies rather than scale, establishing a framework for developing truly graph-savvy language models. Results and verification scripts available at https://github.com/egedemirci/Are-LLMs-Truly-Graph-Savvy-A-Comprehensive-Evaluation-of-Graph-Generation.