Rishivardhan K.


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
SSN-NLP at SemEval-2020 Task 4: Text Classification and Generation on Common Sense Context Using Neural Networks
Rishivardhan K. | Kayalvizhi S | Thenmozhi D. | Raghav R. | Kshitij Sharma
Proceedings of the Fourteenth Workshop on Semantic Evaluation

Common sense validation deals with testing whether a system can differentiate natural language statements that make sense from those that do not make sense. This paper describes the our approach to solve this challenge. For common sense validation with multi choice, we propose a stacking based approach to classify sentences that are more favourable in terms of common sense to the particular statement. We have used majority voting classifier methodology amongst three models such as Bidirectional Encoder Representations from Transformers (BERT), Micro Text Classification (Micro TC) and XLNet. For sentence generation, we used Neural Machine Translation (NMT) model to generate explanatory sentences.