Rini Bhaumik


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Automated Answer Validation using Text Similarity
Balaji Ganesan | Arjun Ravikumar | Lakshay Piplani | Rini Bhaumik | Dhivya Padmanaban | Shwetha Narasimhamurthy | Chetan Adhikary | Subhash Deshapogu
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

Automated answer validation can help improve learning outcomes by providing appropriate feedback to learners, and by making question answering systems and online learning solutions more widely available. There have been some works in science question answering which show that information retrieval methods outperform neural methods, especially in the multiple choice version of this problem. We implement Siamese neural network models and produce a generalised solution to this problem. We compare our supervised model with other text similarity based solutions.