Rinat Khaziev


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
FPI: Failure Point Isolation in Large-scale Conversational Assistants
Rinat Khaziev | Usman Shahid | Tobias Röding | Rakesh Chada | Emir Kapanci | Pradeep Natarajan
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

Large-scale conversational assistants such as Cortana, Alexa, Google Assistant and Siri process requests through a series of modules for wake word detection, speech recognition, language understanding and response generation. An error in one of these modules can cascade through the system. Given the large traffic volumes in these assistants, it is infeasible to manually analyze the data, identify requests with processing errors and isolate the source of error. We present a machine learning system to address this challenge. First, we embed the incoming request and context, such as system response and subsequent turns, using pre-trained transformer models. Then, we combine these embeddings with encodings of additional metadata features (such as confidence scores from different modules in the online system) using a “mixing-encoder” to output the failure point predictions. Our system obtains 92.2% of human performance on this task while scaling to analyze the entire traffic in 8 different languages of a large-scale conversational assistant. We present detailed ablation studies analyzing the impact of different modeling choices.