Richard Scholtens


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
FiSSA at SemEval-2020 Task 9: Fine-tuned for Feelings
Bertelt Braaksma | Richard Scholtens | Stan van Suijlekom | Remy Wang | Ahmet Üstün
Proceedings of the Fourteenth Workshop on Semantic Evaluation

In this paper, we present our approach for sentiment classification on Spanish-English code-mixed social media data in the SemEval-2020 Task 9. We investigate performance of various pre-trained Transformer models by using different fine-tuning strategies. We explore both monolingual and multilingual models with the standard fine-tuning method. Additionally, we propose a custom model that we fine-tune in two steps: once with a language modeling objective, and once with a task-specific objective. Although two-step fine-tuning improves sentiment classification performance over the base model, the large multilingual XLM-RoBERTa model achieves best weighted F1-score with 0.537 on development data and 0.739 on test data. With this score, our team jupitter placed tenth overall in the competition.