This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Richard AlexanderCastro-Mamani
Also published as:
Richard Alexander Castro Mamani
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Low-resource languages sometimes take on similar morphological and syntactic characteristics due to their geographic nearness and shared history. Two low-resource neighboring languages found in Peru, Quechua and Ashaninka, can be considered, at first glance, two languages that are morphologically similar. In order to translate the two languages, various approaches have been taken. For Quechua, neural machine transfer-learning has been used along with byte-pair encoding. For Ashaninka, the language of the two with fewer resources, a finite-state transducer is used to transform Ashaninka texts and its dialects for machine translation use. We evaluate and compare two approaches by attempting to use newly-formed Ashaninka corpora for neural machine translation. Our experiments show that combining the two neighboring languages, while similar in morphology, word sharing, and geographical location, improves Ashaninka– Spanish translation but degrades Quechua–Spanish translations.
Languages can be considered endangered for many reasons. One of the principal reasons for endangerment is the disappearance of its speakers. Another, more identifiable reason, is the lack of written resources. We present an automated sub-segmentation system called AshMorph that deals with the morphology of an Amazonian tribal language called Ashaninka which is at risk of being endangered due to the lack of availability (or resistance) of native speakers and the absence of written resources. We show that by the use of a cross-lingual lexicon and finite state transducers we can increase accuracy by more than 30% when compared to other modern sub-segmentation tools. Our results, made freely available on-line, are verified by an Ashaninka speaker and perform well in two distinct domains, everyday literary articles and the bible. This research serves as a first step in helping to preserve Ashaninka by offering a sub-segmentation process that can be used to normalize any Ashaninka text which will serve as input to a machine translation system for translation into other high-resource languages spoken by higher populated locations like Spanish and Portuguese in the case of Peru and Brazil where Ashaninka is mostly spoken.