Rhr Pruim


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Evaluating the Performance of RAG Methods for Conversational AI in the Airport Domain
Yuyang Li | Pjm Kerbusch | Rhr Pruim | Tobias Käfer
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 3: Industry Track)

Airports from the top 20 in terms of annual passengers are highly dynamic environment with thousands of flights daily, and they aim to increase the degree of automation. To contribute to this, we implemented a Conversational AI system that enables staff in an airport to communicate with flight information systems. This system not only answers standard airport queries but also resolves airport terminology, jargon, abbreviations, and dynamic questions involving reasoning. In this paper, we built three different Retrieval-Augmented Generation (RAG) methods, including traditional RAG, SQL RAG, and Knowledge Graph-based RAG (Graph RAG). Experiments showed that traditional RAG achieved 84.84% accuracy using BM25 + GPT-4 but occasionally produced hallucinations, which is risky to airport safety. In contrast, SQL RAG and Graph RAG achieved 80.85% and 91.49% accuracy respectively, with significantly fewer hallucinations. Moreover, Graph RAG was especially effective for questions that involved reasoning. Based on our observations, we thus recommend SQL RAG and Graph RAG are better for airport environments, due to fewer hallucinations and the ability to handle dynamic questions.