This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RezaSanayei
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Language Models (LLMs) excel at linear reasoning tasks but remain underexplored on non-linear structures such as those found in natural debates, which are best expressed as argument graphs. We evaluate whether LLMs can approximate structured reasoning from Computational Argumentation Theory (CAT). Specifically, we use Quantitative Argumentation Debate (QuAD) semantics, which assigns acceptability scores to arguments based on their attack and support relations. Given only dialogue-formatted debates from two NoDE datasets, models are prompted to rank arguments without access to the underlying graph. We test several LLMs under advanced instruction strategies, including Chain-of-Thought and In-Context Learning. While models show moderate alignment with QuAD rankings, performance degrades with longer inputs or disrupted discourse flow. Advanced prompting helps mitigate these effects by reducing biases related to argument length and position. Our findings highlight both the promise and limitations of LLMs in modeling formal argumentation semantics and motivate future work on graph-aware reasoning.
Detecting machine-generated text is a critical task in the era of large language models. In this paper, we present our systems for SemEval-2024 Task 8, which focuses on multi-class classification to discern between human-written and maching-generated texts by five state-of-the-art large language models. We propose three different systems: unsupervised text similarity, triplet-loss-trained text similarity, and text classification. We show that the triplet-loss trained text similarity system outperforms the other systems, achieving 80% accuracy on the test set and surpassing the baseline model for this subtask. Additionally, our text classification system, which takes into account sentence paraphrases generated by the candidate models, also outperforms the unsupervised text similarity system, achieving 74% accuracy.
The advent of large language models (LLMs) has revolutionized Natural Language Generation (NLG), offering unmatched text generation capabilities. However, this progress introduces significant challenges, notably hallucinations—semantically incorrect yet fluent outputs. This phenomenon undermines content reliability, as traditional detection systems focus more on fluency than accuracy, posing a risk of misinformation spread.Our study addresses these issues by proposing a unified strategy for detecting hallucinations in neural model-generated text, focusing on the SHROOM task in SemEval 2024. We employ diverse methodologies to identify output divergence from the source content. We utilized Sentence Transformers to measure cosine similarity between source-hypothesis and source-target embeddings, experimented with omitting source content in the cosine similarity computations, and Leveragied LLMs’ In-Context Learning with detailed task prompts as our methodologies. The varying performance of our different approaches across the subtasks underscores the complexity of Natural Language Understanding tasks, highlighting the importance of addressing the nuances of semantic correctness in the era of advanced language models.