This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RenyiQu
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Retrieval-augmented generation (RAG) aims to reduce hallucinations by grounding responses in external context, yet large language models (LLMs) still frequently introduce unsupported information or contradictions even when provided with relevant context. This paper presents two complementary efforts at Vectara to measure and benchmark LLM faithfulness in RAG. First, we describe our original hallucination leaderboard, which has tracked hallucination rates for LLMs since 2023 using our HHEM hallucination detection model. Motivated by limitations observed in current hallucination detection methods, we introduce FaithJudge, an LLM-as-a-judge framework that leverages a pool of diverse human-annotated hallucination examples to substantially improve the automated hallucination evaluation of LLMs. We introduce an enhanced hallucination leaderboard centered on FaithJudge that benchmarks LLMs on RAG faithfulness in summarization, question-answering, and data-to-text generation tasks. FaithJudge enables a more reliable benchmarking of LLM hallucinations in RAG and supports the development of more trustworthy generative AI systems: https://github.com/vectara/FaithJudge.
Recent advances in Retrieval-Augmented Generation (RAG) systems have popularized semantic chunking, which aims to improve retrieval performance by dividing documents into semantically coherent segments. Despite its growing adoption, the actual benefits over simpler fixed-size chunking, where documents are split into consecutive, fixed-size segments, remain unclear. This study systematically evaluates the effectiveness of semantic chunking using three common retrieval-related tasks: document retrieval, evidence retrieval, and retrieval-based answer generation. The results show that the computational costs associated with semantic chunking are not justified by consistent performance gains. These findings challenge the previous assumptions about semantic chunking and highlight the need for more efficient chunking strategies in RAG systems.
Summarization is one of the most common tasks performed by large language models (LLMs), especially in applications like Retrieval-Augmented Generation (RAG). However, existing evaluations of hallucinations in LLM-generated summaries, and evaluations of hallucination detection models both suffer from a lack of diversity and recency in the LLM and LLM families considered. This paper introduces FaithBench, a summarization hallucination benchmark comprising challenging hallucinations made by 10 modern LLMs from 8 different families, with ground truth annotations by human experts. “Challenging” here means summaries on which popular, state-of-the-art hallucination detection models, including GPT-4o-as-a-judge, disagreed on. Our results show GPT-4o and GPT-3.5-Turbo produce the least hallucinations. However, most state-of-the-art hallucination detection models have near 50% accuracies on FaithBench, indicating lots of room for future improvement.
We explore the role of dialog acts in style transfer, specifically empathy style transfer – rewriting a sentence to make it more empathetic without changing its meaning. Specifically, we use two novel few-shot prompting strategies: target prompting, which only uses examples of the target style (unlike traditional prompting with source/target pairs), and dialog-act-conditioned prompting, which first estimates the dialog act of the source sentence and then makes it more empathetic using few-shot examples of the same dialog act. Our study yields two key findings: (1) Target prompting typically improves empathy more effectively while maintaining the same level of semantic similarity; (2) Dialog acts matter. Dialog-act-conditioned prompting enhances empathy while preserving both semantics and the dialog-act type. Different dialog acts benefit differently from different prompting methods, highlighting the need for further investigation of the role of dialog acts in style transfer.