Reem Alghamdi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
ArMATH: a Dataset for Solving Arabic Math Word Problems
Reem Alghamdi | Zhenwen Liang | Xiangliang Zhang
Proceedings of the Thirteenth Language Resources and Evaluation Conference

This paper studies solving Arabic Math Word Problems by deep learning. A Math Word Problem (MWP) is a text description of a mathematical problem that can be solved by deriving a math equation to reach the answer. Effective models have been developed for solving MWPs in English and Chinese. However, Arabic MWPs are rarely studied. This paper contributes the first large-scale dataset for Arabic MWPs, which contains 6,000 samples of primary-school math problems, written in Modern Standard Arabic (MSA). Arabic MWP solvers are then built with deep learning models and evaluated on this dataset. In addition, a transfer learning model is built to let the high-resource Chinese MWP solver promote the performance of the low-resource Arabic MWP solver. This work is the first to use deep learning methods to solve Arabic MWP and the first to use transfer learning to solve MWP across different languages. The transfer learning enhanced solver has an accuracy of 74.15%, which is 3% higher than the solver without using transfer learning. We make the dataset and solvers available in public for encouraging more research of Arabic MWPs: https://github.com/reem-codes/ArMATH