Reda Bestandji


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2014

pdf bib
Towards Electronic SMS Dictionary Construction: An Alignment-based Approach
Cédric Lopez | Reda Bestandji | Mathieu Roche | Rachel Panckhurst
Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC'14)

In this paper, we propose a method for aligning text messages (entitled AlignSMS) in order to automatically build an SMS dictionary. An extract of 100 text messages from the 88milSMS corpus (Panckhurst el al., 2013, 2014) was used as an initial test. More than 90,000 authentic text messages in French were collected from the general public by a group of academics in the south of France in the context of the sud4science project (http://www.sud4science.org). This project is itself part of a vast international SMS data collection project, entitled sms4science (http://www.sms4science.org, Fairon et al. 2006, Cougnon, 2014). After corpus collation, pre-processing and anonymisation (Accorsi et al., 2012, Patel et al., 2013), we discuss how “raw” anonymised text messages can be transcoded into normalised text messages, using a statistical alignment method. The future objective is to set up a hybrid (symbolic/statistic) approach based on both grammar rules and our statistical AlignSMS method.