This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RaymondPtucha
Also published as:
Ray Ptucha
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
The application of deep learning to automatic speech recognition (ASR) has yielded dramatic accuracy increases for languages with abundant training data, but languages with limited training resources have yet to see accuracy improvements on this scale. In this paper, we compare a fully convolutional approach for acoustic modelling in ASR with a variety of established acoustic modeling approaches. We evaluate our method on Seneca, a low-resource endangered language spoken in North America. Our method yields word error rates up to 40% lower than those reported using both standard GMM-HMM approaches and established deep neural methods, with a substantial reduction in training time. These results show particular promise for languages like Seneca that are both endangered and lack extensive documentation.
While labor issues and quality assurance in crowdwork are increasingly studied, how annotators make sense of texts and how they are personally impacted by doing so are not. We study these questions via a narrative-sorting annotation task, where carefully selected (by sequentiality, topic, emotional content, and length) collections of tweets serve as examples of everyday storytelling. As readers process these narratives, we measure their facial expressions, galvanic skin response, and self-reported reactions. From the perspective of annotator well-being, a reassuring outcome was that the sorting task did not cause a measurable stress response, however readers reacted to humor. In terms of sensemaking, readers were more confident when sorting sequential, target-topical, and highly emotional tweets. As crowdsourcing becomes more common, this research sheds light onto the perceptive capabilities and emotional impact of human readers.
Interpersonal violence (IPV) is a prominent sociological problem that affects people of all demographic backgrounds. By analyzing how readers interpret, perceive, and react to experiences narrated in social media posts, we explore an understudied source for discourse about abuse. We asked readers to annotate Reddit posts about relationships with vs. without IPV for stakeholder roles and emotion, while measuring their galvanic skin response (GSR), pulse, and facial expression. We map annotations to coreference resolution output to obtain a labeled coreference chain for stakeholders in texts, and apply automated semantic role labeling for analyzing IPV discourse. Findings provide insights into how readers process roles and emotion in narratives. For example, abusers tend to be linked with violent actions and certain affect states. We train classifiers to predict stakeholder categories of coreference chains. We also find that subjects’ GSR noticeably changed for IPV texts, suggesting that co-collected measurement-based data about annotators can be used to support text annotation.