This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RavennaThielstrom
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We describe an approach to generating explanations about why robot actions fail, focusing on the considerations of robots that are run by cognitive robotic architectures. We define a set of Failure Types and Explanation Templates, motivating them by the needs and constraints of cognitive architectures that use action scripts and interpretable belief states, and describe content realization and surface realization in this context. We then describe an evaluation that can be extended to further study the effects of varying the explanation templates.
Turn-entry timing is an important requirement for conversation, and one that spoken dialogue systems largely fail at. In this paper, we introduce a computational framework based on work from Psycholinguistics, which is aimed at achieving proper turn-taking timing for situated agents. The approach involves incremental processing and lexical prediction of the turn in progress, which allows a situated dialogue system to start its turn and initiate actions earlier than would otherwise be possible. We evaluate the framework by integrating it within a cognitive robotic architecture and testing performance on a corpus of task-oriented human-robot directives. We demonstrate that: 1) the system is superior to a non-incremental system in terms of faster responses, reduced gap between turns, and the ability to perform actions early, 2) the system can time its turn to come in immediately at a transition point or earlier to produce several types of overlap, and 3) the system is robust to various forms of disfluency in the input. Overall, this domain-independent framework can be integrated into various dialogue systems to improve responsiveness, and is a step toward more natural, human-like turn-taking behavior.
We present an approach to generating natural language justifications of decisions derived from norm-based reasoning. Assuming an agent which maximally satisfies a set of rules specified in an object-oriented temporal logic, the user can ask factual questions (about the agent’s rules, actions, and the extent to which the agent violated the rules) as well as “why” questions that require the agent comparing actual behavior to counterfactual trajectories with respect to these rules. To produce natural-sounding explanations, we focus on the subproblem of producing natural language clauses from statements in a fragment of temporal logic, and then describe how to embed these clauses into explanatory sentences. We use a human judgment evaluation on a testbed task to compare our approach to variants in terms of intelligibility, mental model and perceived trust.