Raveesh Motlani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2016

pdf bib
A Finite-State Morphological Analyser for Sindhi
Raveesh Motlani | Francis Tyers | Dipti Sharma
Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC'16)

Morphological analysis is a fundamental task in natural-language processing, which is used in other NLP applications such as part-of-speech tagging, syntactic parsing, information retrieval, machine translation, etc. In this paper, we present our work on the development of free/open-source finite-state morphological analyser for Sindhi. We have used Apertium’s lttoolbox as our finite-state toolkit to implement the transducer. The system is developed using a paradigm-based approach, wherein a paradigm defines all the word forms and their morphological features for a given stem (lemma). We have evaluated our system on the Sindhi Wikipedia corpus and achieved a reasonable coverage of 81% and a precision of over 97%.

pdf bib
Shallow Parsing Pipeline - Hindi-English Code-Mixed Social Media Text
Arnav Sharma | Sakshi Gupta | Raveesh Motlani | Piyush Bansal | Manish Shrivastava | Radhika Mamidi | Dipti M. Sharma
Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

pdf bib
Developing language technology tools and resources for a resource-poor language: Sindhi
Raveesh Motlani
Proceedings of the NAACL Student Research Workshop