Rasmus Lehmann


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Political Stance in Danish
Rasmus Lehmann | Leon Derczynski
Proceedings of the 22nd Nordic Conference on Computational Linguistics

The task of stance detection consists of classifying the opinion within a text towards some target. This paper seeks to generate a dataset of quotes from Danish politicians, label this dataset to allow the task of stance detection to be performed, and present annotation guidelines to allow further expansion of the generated dataset. Furthermore, three models based on an LSTM architecture are designed, implemented and optimized to perform the task of stance detection for the generated dataset. Experiments are performed using conditionality and bi-directionality for these models, and using either singular word embeddings or averaged word embeddings for an entire quote, to determine the optimal model design. The simplest model design, applying neither conditionality or bi-directionality, and averaged word embeddings across quotes, yields the strongest results. Furthermore, it was found that inclusion of the quotes politician, and the party affiliation of the quoted politician, greatly improved performance of the strongest model.