Rapepong Pitijaroonpong


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
VeReaFine: Iterative Verification Reasoning Refinement RAG for Hallucination-Resistant on Open-Ended Clinical QA
Pakawat Phasook | Rapepong Pitijaroonpong | Jiramet Kinchagawat | Amrest Chinkamol | Tossaporn Saengja | Kiartnarin Udomlapsakul | Jitkapat Sawatphol | Piyalitt Ittichaiwong
Proceedings of the 24th Workshop on Biomedical Language Processing (Shared Tasks)

We present VeReaFine, a novel “Verifier-RAG” pipeline designed to eliminate hallucinations in open-ended clinical question answering. VeReaFine interleaves three tightly coupled stages—retrieval, verification, and generation—across up to three iterations. First, a two-stage dense retriever (BM-Retriever-410M → BM-Reranker-2B) fetches and ranks top-k biomedical passages; an 8B-parameter MedReason verifier then filters these for direct relevance and identifies missing evidence. When the verifier deems the context insufficient, it formulates a focused “feedback query” to retrieve additional passages (bounded to prevent infinite loops). Once a minimal ground-truth context is assembled, a 7B-parameter generator (Qwen2.5-7B-Instruct) drafts an answer purely from that vetted context, and the verifier performs a final check—prompting the generator to refine any remaining unsupported claims. By iteratively fetching only missing facts and ensuring every assertion is evidence-backed, VeReaFine achieves monotonic factuality improvements with minimal overhead. On the BioNLP 2025 ClinIQLink “LLM Lie-Detector” shared task, our 7B generator augmented with VeReaFine matches or surpasses a 32B medical model on open-ended reasoning metrics, reducing multi-hop inverse step-identification errors by 26%. These findings demonstrate that moderate-size LLMs, when guided by targeted verification loops, can deliver expert-level reliability in clinical QA.