Randall Sell


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Hope vs. Hate: Understanding User Interactions with LGBTQ+ News Content in Mainstream US News Media through the Lens of Hope Speech
Jonathan Pofcher | Christopher M Homan | Randall Sell | Ashiqur R. KhudaBukhsh
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

This paper makes three contributions. First, via a substantial corpus of 1,419,047 comments posted on 3,161 YouTube news videos of major US cable news outlets, we analyze how users engage with LGBTQ+ news content. Our analyses focus both on positive and negative content. In particular, we construct a hope speech classifier that detects positive (hope speech), negative, neutral, and irrelevant content. Second, in consultation with a public health expert specializing on LGBTQ+ health, we conduct an annotation study with a balanced and diverse political representation and release a dataset of 3,750 instances with crowd-sourced labels and detailed annotator demographic information. Finally, beyond providing a vital resource for the LGBTQ+ community, our annotation study and subsequent in-the-wild assessments reveal (1) strong association between rater political beliefs and how they rate content relevant to a marginalized community, (2) models trained on individual political beliefs exhibit considerable in-the-wild disagreement, and (3) zero-shot large language models (LLMs) align more with liberal raters.