Ramya Tekumalla


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Characterizing drug mentions in COVID-19 Twitter Chatter
Ramya Tekumalla | Juan M Banda
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

Since the classification of COVID-19 as a global pandemic, there have been many attempts to treat and contain the virus. Although there is no specific antiviral treatment recommended for COVID-19, there are several drugs that can potentially help with symptoms. In this work, we mined a large twitter dataset of 424 million tweets of COVID-19 chatter to identify discourse around drug mentions. While seemingly a straightforward task, due to the informal nature of language use in Twitter, we demonstrate the need of machine learning alongside traditional automated methods to aid in this task. By applying these complementary methods, we are able to recover almost 15% additional data, making misspelling handling a needed task as a pre-processing step when dealing with social media data.