Ramin Zabih


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Unsupervised Text Deidentification
John Morris | Justin Chiu | Ramin Zabih | Alexander Rush
Findings of the Association for Computational Linguistics: EMNLP 2022

Deidentification seeks to anonymize textual data prior to distribution. Automatic deidentification primarily uses supervised named entity recognition from human-labeled data points. We propose an unsupervised deidentification method that masks words that leak personally-identifying information. The approach utilizes a specially trained reidentification model to identify individuals from redacted personal documents. Motivated by K-anonymity based privacy, we generate redactions that ensure a minimum reidentification rank for the correct profile of the document. To evaluate this approach, we consider the task of deidentifying Wikipedia Biographies, and evaluate using an adversarial reidentification metric. Compared to a set of unsupervised baselines, our approach deidentifies documents more completely while removing fewer words. Qualitatively, we see that the approach eliminates many identifying aspects that would fall outside of the common named entity based approach.