Ramanand Vangipuram


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
ResearchTeam_HCN at SemEval-2023 Task 6: A knowledge enhanced transformers based legal NLP system
Dhanachandra Ningthoujam | Pinal Patel | Rajkamal Kareddula | Ramanand Vangipuram
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

This paper presents our work on LegalEval (understanding legal text), one of the tasks in SemEval-2023. It comprises of three sub-tasks namely Rhetorical Roles (RR), Legal Named Entity Recognition (L-NER), and Court Judge- ment Prediction with Explanation (CJPE). We developed different deep-learning models for each sub-tasks. For RR, we developed a multi- task learning model with contextual sequential sentence classification as the main task and non- contextual single sentence prediction as the sec- ondary task. Our model achieved an F1-score of 76.50% on the unseen test set, and we at- tained the 14th position on the leaderboard. For the L-NER problem, we have designed a hybrid model, consisting of a multi-stage knowledge transfer learning framework and a rule-based system. This model achieved an F1-score of 91.20% on the blind test set and attained the top position on the final leaderboard. Finally, for the CJPE task, we used a hierarchical ap- proach and could get around 66.67% F1-score on judgment prediction and 45.83% F1-score on the explainability of the CJPE task, and we attained 8th position on the leaderboard for this sub-task.