Rahul Porwal


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Analysis of LLM as a grammatical feature tagger for African American English
Rahul Porwal | Alice Rozet | Jotsna Gowda | Pryce Houck | Kevin Tang | Sarah Moeller
Findings of the Association for Computational Linguistics: NAACL 2025

African American English (AAE) presents unique challenges in natural language processing (NLP) This research systematically compares the performance of available NLP models—rule-based, transformer-based, and large language models (LLMs)—capable of identifying key grammatical features of AAE, namely Habitual Be and Multiple Negation. These features were selected for their distinct grammatical complexity and frequency of occurrence. The evaluation involved sentence-level binary classification tasks, using both zero-shot and few-shot strategies. The analysis reveals that while LLMs show promise compared to the baseline, they are influenced by biases such as recency and unrelated features in the text such as formality. This study highlights the necessity for improved model training and architectural adjustments to better accommodate AAE’s unique linguistic characteristics. Data and code are available.