Raheela Saleem


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
A Deep Learning System for Automatic Extraction of Typological Linguistic Information from Descriptive Grammars
Shafqat Mumtaz Virk | Daniel Foster | Azam Sheikh Muhammad | Raheela Saleem
Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021)

Linguistic typology is an area of linguistics concerned with analysis of and comparison between natural languages of the world based on their certain linguistic features. For that purpose, historically, the area has relied on manual extraction of linguistic feature values from textural descriptions of languages. This makes it a laborious and time expensive task and is also bound by human brain capacity. In this study, we present a deep learning system for the task of automatic extraction of linguistic features from textual descriptions of natural languages. First, textual descriptions are manually annotated with special structures called semantic frames. Those annotations are learned by a recurrent neural network, which is then used to annotate un-annotated text. Finally, the annotations are converted to linguistic feature values using a separate rule based module. Word embeddings, learned from general purpose text, are used as a major source of knowledge by the recurrent neural network. We compare the proposed deep learning system to a previously reported machine learning based system for the same task, and the deep learning system wins in terms of F1 scores with a fair margin. Such a system is expected to be a useful contribution for the automatic curation of typological databases, which otherwise are manually developed.