This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
RadiathunTasnia
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Sexism is a harmful phenomenon that provokes gender inequalities and social imbalances. The expanding application of sexist content on social media platforms creates an unwelcoming and discomforting environment for many users. The implication of sexism is a multi-faceted subject as it can be integrated with other categories of discrimination. Binary classification tools are frequently employed to identify sexist content, but most of them provide extensive, generic categories with no further insights. SemEval-2023 introduced the Explainable Detection of Online Sexism (EDOS) task that emphasizes detecting and explaining the category of sexist content. The content of this paper details our involvement in this task where we present a neural network architecture employing document embeddings from a fine-tuned transformer-based model into stacked long short-term memory (LSTM) and a fully connected linear (FCL) layer . Our proposed methodology obtained an F1 score of 0.8218 (ranked 51st) in Task A. It achieved an F1 score of 0.5986 (ranked 40th) and 0.4419 (ranked 28th) in Tasks B and C, respectively.
The upsurge of prolific blogging and microblogging platforms enabled the abusers to spread negativity and threats greater than ever. Detecting the toxic portions substantially aids to moderate or exclude the abusive parts for maintaining sound online platforms. This paper describes our participation in the SemEval 2021 toxic span detection task. The task requires detecting spans that convey toxic remarks from the given text. We explore an ensemble of sequence labeling models including the BiLSTM-CRF, spaCy NER model with custom toxic tags, and fine-tuned BERT model to identify the toxic spans. Finally, a majority voting ensemble method is used to determine the unified toxic spans. Experimental results depict the competitive performance of our model among the participants.
Inscribing persuasion techniques in memes is the most impactful way to influence peoples’ mindsets. People are more inclined to memes as they are more stimulating and convincing and hence memes are often exploited by tactfully engraving propaganda in its context with the intent of attaining specific agenda. This paper describes our participation in the three subtasks featured by SemEval 2021 task 6 on the detection of persuasion techniques in texts and images. We utilize a fusion of logistic regression, decision tree, and fine-tuned DistilBERT for tackling subtask 1. As for subtask 2, we propose a system that consolidates a span identification model and a multi-label classification model based on pre-trained BERT. We address the multi-modal multi-label classification of memes defined in subtask 3 by utilizing a ResNet50 based image model, DistilBERT based text model, and a multi-modal architecture based on multikernel CNN+LSTM and MLP model. The outcomes illustrated the competitive performance of our systems.
COVID-19 pandemic has become the trending topic on twitter and people are interested in sharing diverse information ranging from new cases, healthcare guidelines, medicine, and vaccine news. Such information assists the people to be updated about the situation as well as beneficial for public safety personnel for decision making. However, the informal nature of twitter makes it challenging to refine the informative tweets from the huge tweet streams. To address these challenges WNUT-2020 introduced a shared task focusing on COVID-19 related informative tweet identification. In this paper, we describe our participation in this task. We propose a neural model that adopts the strength of transfer learning and hand-crafted features in a unified architecture. To extract the transfer learning features, we utilize the state-of-the-art pre-trained sentence embedding model BERT, RoBERTa, and InferSent, whereas various twitter characteristics are exploited to extract the hand-crafted features. Next, various feature combinations are utilized to train a set of multilayer perceptron (MLP) as the base-classifier. Finally, a majority voting based fusion approach is employed to determine the informative tweets. Our approach achieved competitive performance and outperformed the baseline by 7% (approx.).