Rachit Bagga


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
CogAI@SMM4H 2024: Leveraging BERT-based Ensemble Models for Classifying Tweets on Developmental Disorders
Liza Dahiya | Rachit Bagga
Proceedings of the 9th Social Media Mining for Health Research and Applications (SMM4H 2024) Workshop and Shared Tasks

This paper presents our work for the Task 5 of the Social Media Mining for Health Applications 2024 Shared Task - Binary classification of English tweets reporting children’s medical disorders. In this paper, we present and compare multiple approaches for automatically classifying tweets from parents based on whether they mention having a child with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASD), delayed speech, or asthma. We use ensemble of various BERT-based models trained on provided dataset that yields an F1 score of 0.901 on the test data.