Qusai Ismail


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
JUST-BLUE at SemEval-2021 Task 1: Predicting Lexical Complexity using BERT and RoBERTa Pre-trained Language Models
Tuqa Bani Yaseen | Qusai Ismail | Sarah Al-Omari | Eslam Al-Sobh | Malak Abdullah
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

Predicting the complexity level of a word or a phrase is considered a challenging task. It is even recognized as a crucial step in numerous NLP applications, such as text rearrangements and text simplification. Early research treated the task as a binary classification task, where the systems anticipated the existence of a word’s complexity (complex versus uncomplicated). Other studies had been designed to assess the level of word complexity using regression models or multi-labeling classification models. Deep learning models show a significant improvement over machine learning models with the rise of transfer learning and pre-trained language models. This paper presents our approach that won the first rank in the SemEval-task1 (sub stask1). We have calculated the degree of word complexity from 0-1 within a text. We have been ranked first place in the competition using the pre-trained language models Bert and RoBERTa, with a Pearson correlation score of 0.788.