This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
QuanzengYou
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Pre-training on large, high-quality datasets is essential for improving the reasoning abilities of Large Language Models (LLMs), particularly in specialized fields like mathematics. However, the field of Multimodal LLMs (MLLMs) lacks a comprehensive, open-source dataset for mathematical reasoning. To fill this gap, we present InfiMM-WebMath-40B, a high-quality dataset of interleaved image-text documents. It consists of 24 million web pages, 85 million image URLs, and 40 billion text tokens, all carefully extracted and filtered from CommonCrawl. We outline our data collection and processing pipeline in detail. Models trained on InfiMM-WebMath-40B demonstrate strong performance in both text-only and multimodal settings, setting a new state-of-the-art on multimodal math benchmarks such as MathVerse and We-Math.
In this work, we present InfiMM, an advanced Multimodal Large Language Model that adapts to intricate vision-language tasks. InfiMM, inspired by the Flamingo architecture, distinguishes itself through the utilization of large-scale training data, comprehensive training strategies, and diverse large language models. This approach ensures the preservation of Flamingo’s foundational strengths while simultaneously introducing augmented capabilities. Empirical evaluations across a variety of benchmarks underscore InfiMM’s remarkable capability in multimodal understanding. The code can be found at: https://anonymous.4open.science/r/infimm-zephyr-F60C/.
Medical report generation is one of the most challenging tasks in medical image analysis. Although existing approaches have achieved promising results, they either require a predefined template database in order to retrieve sentences or ignore the hierarchical nature of medical report generation. To address these issues, we propose MedWriter that incorporates a novel hierarchical retrieval mechanism to automatically extract both report and sentence-level templates for clinically accurate report generation. MedWriter first employs the Visual-Language Retrieval (VLR) module to retrieve the most relevant reports for the given images. To guarantee the logical coherence between generated sentences, the Language-Language Retrieval (LLR) module is introduced to retrieve relevant sentences based on the previous generated description. At last, a language decoder fuses image features and features from retrieved reports and sentences to generate meaningful medical reports. We verified the effectiveness of our model by automatic evaluation and human evaluation on two datasets, i.e., Open-I and MIMIC-CXR.