Quang Vu-minh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2004

pdf bib
Modèle de langage sémantique pour la reconnaissance automatique de parole dans un contexte de traduction
Quang Vu-minh | Laurent Besacier | Hervé Blanchon | Brigitte Bigi
Actes de la 11ème conférence sur le Traitement Automatique des Langues Naturelles. Posters

Le travail présenté dans cet article a été réalisé dans le cadre d’un projet global de traduction automatique de la parole. L’approche de traduction est fondée sur un langage pivot ou Interchange Format (IF), qui représente le sens de la phrase indépendamment de la langue. Nous proposons une méthode qui intègre des informations sémantiques dans le modèle statistique de langage du système de Reconnaissance Automatique de Parole. Le principe consiste a utiliser certaines classes définies dans l’IF comme des classes sémantiques dans le modèle de langage. Ceci permet au système de reconnaissance de la parole d’analyser partiellement en IF les tours de parole. Les expérimentations realisées montrent qu’avec cette approche, le système de reconnaissance peut analyser directement en IF une partie des données de dialogues de notre application, sans faire appel au système de traduction (35% des mots ; 58% des tours de parole), tout en maintenant le même niveau de performance du système global.