Qixi Lu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
MTA4DPR: Multi-Teaching-Assistants Based Iterative Knowledge Distillation for Dense Passage Retrieval
Qixi Lu | Endong Xun | Gongbo Tang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Although Dense Passage Retrieval (DPR) models have achieved significantly enhanced performance, their widespread application is still hindered by the demanding inference efficiency and high deployment costs. Knowledge distillation is an efficient method to compress models, which transfers knowledge from strong teacher models to weak student models. Previous studies have proved the effectiveness of knowledge distillation in DPR. However, there often remains a significant performance gap between the teacher and the distilled student. To narrow this performance gap, we propose MTA4DPR, a Multi-Teaching-Assistants based iterative knowledge distillation method for Dense Passage Retrieval, which transfers knowledge from the teacher to the student with the help of multiple assistants in an iterative manner; with each iteration, the student learns from more performant assistants and more difficult data. The experimental results show that our 66M student model achieves the state-of-the-art performance among models with same parameters on multiple datasets, and is very competitive when compared with larger, even LLM-based, DPR models.