Qiuxiang He


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Fast and Accurate Neural Machine Translation with Translation Memory
Qiuxiang He | Guoping Huang | Qu Cui | Li Li | Lemao Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

It is generally believed that a translation memory (TM) should be beneficial for machine translation tasks. Unfortunately, existing wisdom demonstrates the superiority of TM-based neural machine translation (NMT) only on the TM-specialized translation tasks rather than general tasks, with a non-negligible computational overhead. In this paper, we propose a fast and accurate approach to TM-based NMT within the Transformer framework: the model architecture is simple and employs a single bilingual sentence as its TM, leading to efficient training and inference; and its parameters are effectively optimized through a novel training criterion. Extensive experiments on six TM-specialized tasks show that the proposed approach substantially surpasses several strong baselines that use multiple TMs, in terms of BLEU and running time. In particular, the proposed approach also advances the strong baselines on two general tasks (WMT news Zh->En and En->De).