Qiusheng Zheng

Also published as: 秋生


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
基于参数高效微调与半监督学习的空间语义理解
Chenyang Li (李晨阳) | Long Zhang (张龙) | Qiusheng Zheng (郑秋生)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“本文介绍了我们在第二十三届中文计算语言大会的第四届中文空间语义理解评测任务中提交的参赛模型。该任务旨在测试机器的中文语义理解水平。现有研究显示,机器的中文语义理解水平与人类平均水平相比仍有较大差距。近年来,生成式大规模语言模型在自然语言处理任务中展现了出色的生成和泛化能力。在本次评测中,我们采用了对Qwen1.5-7b模型进行高效微调的方法,以端到端的形式实现空间语义的推理过程,并结合prompt优化和半监督学习提升推理表现。实验结果表明,我们的模型在该任务中取得了领先的效果。”

pdf bib
基于深度学习模型的中小学作文修辞识别与理解评测
Chenyang Li (李晨阳) | Long Zhang (张龙) | Qiusheng Zheng (郑秋生)
Proceedings of the 23rd Chinese National Conference on Computational Linguistics (Volume 3: Evaluations)

“在中小学生的学习进程中,修辞手法是阅读和写作技巧的核心,也是优秀文学作品的关键元素。然而,识别与理解学生文章中的修辞使用需要大量的人工,为教师的作文评估和教学提出了挑战。最近的研究开始使用计算机技术来自动评审作文,其中修辞的使用是评估的重要部分。本文介绍了我们在第二十三届中文计算语言大会中中小学作文修辞识别与理解评测中的所用的参赛方法。在本次评测中,我们针对不同任务,分别使用了传统模型分类模型和大模型,再利用伪标签、数据增强等方法提升模型性能。实验结果表明,我们的方法取得了较为先进的效果。”